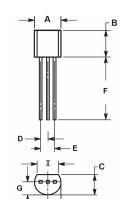
Sensitive Gate Sillicon Controlled Rectifiers Reverse Blocking Thyristors

SCRs 0.8 AMPERES RMS 400 VOLTS


TO-92 (TO-226AA)

FEATURES

- Sensitive Gate Allows Triggering by Microcontrollers and Other logic Circuits
- Blocking Voltage to 400 Volts
- High Surge Current Capability 10 Amperes
- Minimum and Maximum Values of IGT, VGT and IH Specified for Ease of Design
- Glass-Passivated Surface for Reliability and Uniformity
- Pb-Free Package

MECHANICAL DATA

- Case: Molded plastic
- Weight: 0.007 ounces, 0.2 grams

TO-92				
DIM.	MIN. MAX.			
Α	4.45	4.70		
В	4.32 5.33			
С	3.18	4.19		
D	1.15	1.39		
Е	2.42	2.66		
F	12.7			
G	2.04	2.66		
1	3.43			
All Dimensions in millimeter				

PINASSIGNMENT			
1 Cathode			
2 Gate			
9	Anode		

MAXIMUM RATINGS (Tj= 25°C unless otherwise noticed)

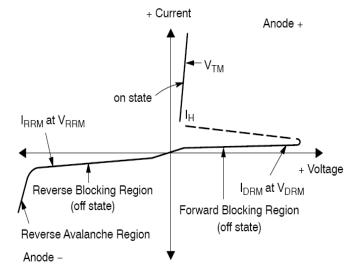
Rating	Symbol	Value	Unit
Peak Repetitive Off - State Voltage (T _J = -40 to 110°C, Sine Wave, 50 to 60 Hz; Gate Open)	VDRM VRRM	400	Volts
On-State RMS Current (Tc = 80°C) 180° Conduction Angles	IT(RMS)	0.8	Amps
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave, 60 Hz, TJ = 25℃)	ITSM	10	Amps
Circuit Fusing Consideration (t = 8.3 ms)	l ² t	0.415	A ² s
Forward Peak Gate Power (Ta = 25 $^{\circ}$ C, Pulse Width \leq 1.0 us)	Рдм	0.1	Watts
Forward Average Gate Power (Ta = 25°C, t = 8.3 ms)	PG(AV)	0.1	Watts
Forward Peak Gate Current (Ta = 25°C, Pulse Width ≤ 1.0 us)	Igм	1	Amps
Reverse Peak Gate Voltage (Ta = 25°C, Pulse Width ≦1.0 ms)	VGRM	5	Volts
Operating Junction Temperature Range @ Rate VRRM and VDRM	TJ	-40 to + 110	$^{\circ}\mathbb{C}$
Storage Temperature Range	Tstg	-40 to + 150	$^{\circ}\mathbb{C}$
	•	REV. 1, Oct-2010, K	TXD24

RATING AND CHARACTERISTIC CURVES MCR100-6

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance – Junction to Case	RthjC	75	°C/W
Maximum Lead Temperature for Soldering Purposes 1/16" from Case for 10 Seconds	TL	260	$^{\circ}\mathbb{C}$

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERSITICS						
Peak Reptitive Forward or Reverse Blocking Current (VD=Rated VDRM and VRRM; RGK =1K Ohms)	TJ=25℃ TJ=110℃	IDRM IRRM			10 100	uA
ON CHARACTERISTICS						
Peak Forward On-State Voltage (ITM= \pm 1.6A Peak, Pulse Width \leq 1.0ms, Duty Cycle \leq 1%)		VTM			1.7	Volt
Gate Trigger Current(VD= 7.0 Vdc, RL=100 Ohms) (1)		IGT			50	uA
Holding Current(VD= 7.0 Vdc, Intitiating Current = 20mA)	TJ= 25℃	lн			5	mA
Tribing Guiterit(VD= 7.5 Vdc, initiating Guiterit = 25m/A)	TJ= -40°C				10	
Coto Trigger Veltage (V/D= 7.0 V/de DI = 100 Ohme) (1)	TJ= 25℃				0.8	Volts
Gate Trigger Voltage(VD= 7.0 Vdc, RL=100 Ohms) (1)	TJ= -40°C	VGT			1.2	VOILS
Latch Current(VD= 7.0 Vdc, RL 100 Ohms)	/dc. RL 100 Ohms)		10	mA		
Later Current(VD= 7.0 Vdc, RL 100 Onns)	TJ= -40°C	IL			15	111/-


Critical Rate of Rise of Off-State Voltage	al/al#	20		\//··-	
(VD=Rated VDRM, Exponential Waveform, PGK=1K Ohms, TJ=110 $^{\circ}\mathrm{C}$	dv/dt	20	 	V/us	

⁽¹⁾ RGK current is not included in measurement

Voltage Current Characteristic of SCR

Symbol	Parameter
V_{DRM}	Peak Repetitive Off State Forward Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Off State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Peak on State Voltage
I _H	Holding Current

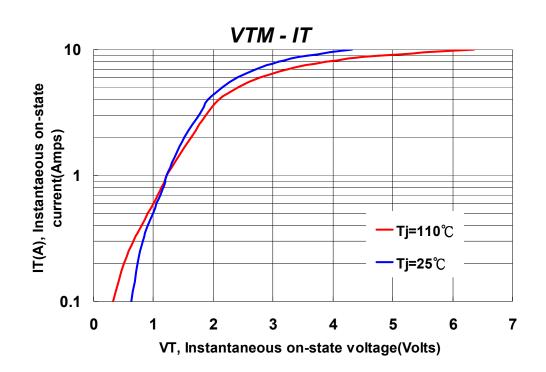
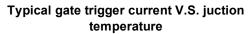



Figure 1. On-State Characteristics

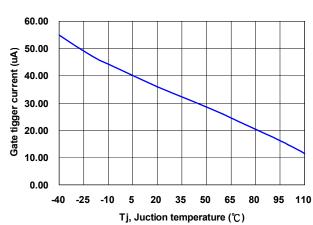


Figure 2. IGT(TJ) / IGT(25°C) versus TJ

Typical holding current V.S. juction temperature

Figure 4. IH versus TJ

Typical gate tigger voltage V.S. juction temperature

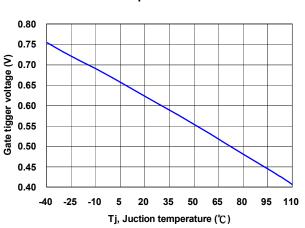


Figure 3. VGT(TJ) / VGT(25°C) versus

Typical latch current V.S. juction temperature

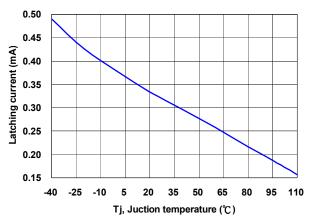


Figure 5. IL versus TJ

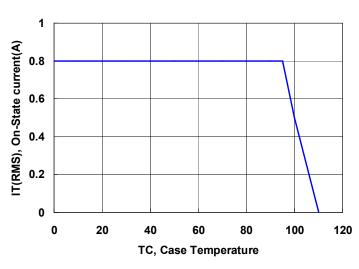


Figure 6. On-Stage Current Rating Curve

Important Notice and Disclaimer

LSC reserves the right to make changes to this document and its products and specifications at any time without notice. Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.

LSC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does LSC assume any liability for application assistance or customer product design. LSC does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.

No license is granted by implication or otherwise under any intellectual property rights of LSC.

LSC products are not authorized for use as critical components in life support devices or systems without express written approval of LSC.